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Flammability of oil-based painted gypsum wallboard subjected
to fire heat fluxes

Frederick W. Mowrer™"

Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742, U.S.A.

SUMMARY

The flammability of painted gypsum wallboard (GWB) exposed to fire heat fluxes is investigated. GWB
samples coated with multiple layers of alkyd/oil-based paint are subjected to constant incident heat fluxes
of 35, 50 and 75kW/m? in the Cone Calorimeter for periods of 5, 10 and 15min. A number of coats of
alkyd/oil-based interior semi-gloss enamel paint, including 1, 2, 4, 6 and 8 coats, are applied over a single
coat of oil-based primer to the exposed surface of 16 mm (5/8 in.) thick type X GWB. Unpainted type X
GWB is also evaluated under the same exposure conditions. The potential for upward flame spread based
on the Cone Calorimeter results is evaluated. The occurrence of paint ‘blistering’ is observed to have a
significant effect on the time to ignition and consequently on the potential for upward flame spread.
Further work is needed to evaluate the conditions under which ‘blistering’ will occur and its effects on the
potential for surface flame spread on painted gypsum wallboard. Copyright © 2004 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Painted gypsum wallboard (GWB) is one of the most widely used interior wall and ceiling
finishes in the United States and perhaps throughout the world. Consisting of a core of gypsum
(calcium sulfate dihydrate) sandwiched between two paper facers, GWB is available in a range
of standard sizes and thicknesses. Because of its low cost, ease of installation and desirable finish
characteristics, the use of GWB has largely replaced the use of traditional lath and plaster in
both residential and commercial applications.

In many fire scenarios involving painted GWB finishes, the exposed painted surface and paper
facer have been observed to burn out locally when subjected to fire heat fluxes. Fire investigators
frequently use such damage patterns to draw conclusions regarding the development of a fire [1].
In other scenarios, the painted surface and paper facer have been observed to propagate a fire.
The objective of this study is to evaluate the potential for flame spread on painted GWB and to
determine the exposure conditions under which flame propagation is expected to occur. Cone

*Correspondence to: F. W. Mowrer, Department of Fire Protection Engineering, University of Maryland, College Park,
MD 20742, U.S.A.
TE-mail: fmowrer@eng.umd.edu

Received 1 February 2001
Copyright © 2004 John Wiley & Sons, Ltd. Accepted 24 June 2003



356 F. W. MOWRER

calorimetry has been used in conjunction with a flame spread model developed by Quintiere and
co-workers [2,3,4] to perform this evaluation.

In this project, GWB samples painted with 1 to 8 coats of alkyd/oil-based interior paint over 1
coat of oil-based primer are subjected, along with unpainted samples, to heat fluxes of 35, 50
and 75kW/m? in the Cone Calorimeter for periods of 5, 10 and 15 min. Three replicate tests are
conducted for each coating—heat flux—duration combination. Since all burning is essentially
completed within the first 5min of each test, for practical purposes there are 9 replicate tests for
each coating—heat flux combination. The different test durations were used to evaluate the
deyhdration of the GWB; results of the dehydration study are reported elsewhere [5].

2. BACKGROUND

The potential fire hazards associated with multiple layers of surface coatings have been
recognized and addressed to some extent, particularly in the United Kingdom [6,7]. As far back
as 1954, Pickard [6] reported on the potential effects, both positive and negative, that paints and
other surface coatings can have on the ignition and flame spread of combustible surfaces. More
recently, Murrell and Rawlins [7] addressed the fire hazard of surfaces coated with multiple
layers of paint following a number of fires, including the King’s Cross Underground fire in
London and a number of stairway fires in New York tenements, where this factor was perceived
to be significant. They conducted standard tests with samples coated with 14 layers of paint,
using a variety of ‘aged’ and ‘unaged’ oil-based and water-based finishes. For these samples,
they observed that flame spread was supported only for imposed heat fluxes over 15kW/m?.
They noted that poor adhesion and ‘blistering’ affects performance. They concluded that all
existing paint films should be perceived as potentially flammable and that the end-use hazards of
existing paint films should be appropriately ascertained and addressed.

In a previous study by McGraw and Mowrer [8,9], GWB samples were painted with 2 to 8
coats of a latex-based interior paint plus one coat of a latex-based primer, then subjected to heat
fluxes of 25, 50 or 75 kW/m? in the Cone Calorimeter for periods of 5, 10 or 15 min. Unpainted
samples were similarly evaluated. Results of this previous study suggest that these painted
surfaces are not likely to spread a fire under ambient temperature conditions at imposed heat
fluxes of less than approximately 75kW/m? regardless of the number of paint coats, but that
they may spread a fire at this heat flux and higher. The behavior of GWB coated with various
layers of oil-based paint is of interest to see how its performance compares with that of GWB
coated with latex-based paint.

3. SAMPLE PREPARATION

The GWB samples were prepared by first cutting 162 specimens, each 100 mm square, from
sheets of 15.9 mm (5/8 in.) thick type X GWB obtained at a local home improvement center. The
samples were all weighed and the masses of the unpainted samples were recorded. 27 of the 162
samples were set aside to serve as the unpainted samples. After each stage of preparation and
before weighing and testing, the samples were stored in a conditioned laboratory at a
temperature of approximately 20°C and a relative humidity of approximately 50% until dry.
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The remaining 135 samples were coated with a single layer of oil-based interior primer and a
single layer of alkyd/oil semi-gloss enamel using a paint roller. These samples were allowed to
dry to an equilibrium moisture content between and after each application, then they were
weighed and their masses were recorded. Of these 135 samples, 27 were set aside to serve as the
1-coat samples. The remaining 108 samples were then coated with a second layer of oil-based
interior paint using a paint roller. After drying, these samples were weighed and their masses
were recorded, and 27 of these samples were set aside to serve as the 2-coat samples. The
remaining 81 samples were coated with two more layers of paint, with 27 of these samples set
aside to serve as the 4-coat samples. This process was repeated two more times to yield 6-coat
and 8-coat samples.

The samples were divided into three sets, with nine samples for each coating category included
in each set. Sample set designations and corresponding heat fluxes were assigned as:

® Sect 1-35kW/m? exposure
® Set 2-50 kW/m? exposure
® Set 3-75kW/m? exposure

Of the nine samples in each coating category for each heat flux, three were tested for 5min,
three for 10 min and three for 15 min. Since all burning was effectively completed within the first
5Smin for samples that ignited, for purposes of flammability evaluation there were 9 replicate
tests conducted for each heat flux—coating combination. The different test durations were used
to evaluate the dehydration of the gypsum wallboard samples [5]; they did not influence the
flammability evaluation.

The mass of each GWB specimen before painting was determined and recorded. These
weights are provided in Table I(a) for Set 1, in Table I(b) for Set 2 and in Table I(c) for Set 3.
The average mass of the 162 unpainted samples was determined to be 110.2 g. The volume of a
sample is calculated to be 1.59 x 10~*m? based on specimen dimensions of 100 mm x 100 mm x
15.9 mm. From this average sample mass and calculated volume, the average bulk density of an
unpainted sample is calculated to be 693 kg/m>. According to the manufacturer of the GWB
used for this testing [10], the area density of the paper on the front surface is approximately
220 g/m? (45 1bs/1000 sq. ft), while that on the back surface is approximately 205 g/m* (42 1bs/
1000 sq. ft). Thus, the mass of the paper on the exposed surface of a 100 mm square test
specimen is approximately 2.2 g and would constitute approximately 2 per cent of the mass of an
unpainted sample.

The individual and average sample mass data are presented in Tables I(a) to I(c). From these
data, the individual and average masses associated with the different layers of paint can be
determined. The average paint mass associated with the different layers of paint are shown in
Figures 1 to 3 for sample sets 1 to 3, respectively, while the average application rate (mass/area)
per coating for the three sample sets are shown in Figure 4. As evident in Figure 4, there was
some variability in the application rate for each coating as well as between sample sets. The
variability based on the number of coatings can be explained, at least in part, by the decreasing
absorptance of the surface as additional paint coats are added, although this does not explain
the increase in paint mass per coating that occurs between the 3rd/4th and 5th/6th applications.
This variability as well as the variability between sample sets can only be described in terms of
random variability in the application rate since all the samples were coated at the same times by
the same person using the same technique. On average, each coating of paint or primer added
approximately 0.7 g of mass to a GWB sample, although this value ranged from approximately
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Paint mass (average)
35 kW/m? samples
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Figure 1. Average paint mass per sample for sample set 1-35kW/m? heat flux.
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Figure 2. Average paint mass per sample for sample set 2-50 kW/m? heat flux.

0.4 to 1.0 g depending on the coating and set numbers. For the 0.1 m square GWB samples, this
yields an application rate of 70 + 30 g/m?, as shown in Figure 4.

This application rate of 70 + 30 g/m2 was compared with product literature [11] on
recommended application rates for the paint used in this project. In US units, a gallon (3.7851)
of the alkyd/oil semi-gloss enamel weighs approximately 11 pounds (5kg) and has a
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Figure 3. Average paint mass per sample for sample set 2-75kW/m? heat flux.
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Figure 4. Paint application rates per coating (dry basis) for three sets.

recommended coverage of 400 square feet (37.2m?) per gallon on smooth surfaces, such as
GWRB. This yields a wet application rate of 134.5 g/m?. The percent of solids by weight in this
oil-based paint is approximately 72 per cent. Assuming this is the fraction of the weight
remaining on the coated surface once the paint has dried, with the remaining fraction
evaporated during the drying process, the recommended dry application rate would be
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Table II. Reported composition of the alkyd/oil semi-gloss interior enamel used for this project.

Component Percent of mixture
Calcium carbonate 6.2-25.2
Diatomaceous earth 0-2.6
Exempt mineral spirits 15.3-18.6
Hydrous aluminum silicate 0-16.1
Odorless mineral spirits 8.2-13.0
Oilseed compound 0-5.9
Synthetic resin complex 24.0-27.8
Titanium dioxide 0-21.6
Xylene 0.3-1.0
Zinc oxide 0-0.6

96.9 g/m°. This would suggest that the average application rate during sample preparation was
approximately 72 per cent of the recommended application rate for this paint.

The exact composition of the paint used for this project is not known; information provided
in the material safety data sheet for this product [12] on the ranges for the various components
on a wet basis is provided in Table II. Based on a review of these components, the only
combustible component in this mixture after drying is believed to be the ‘synthetic resin
complex,” which constitutes approximately 25 per cent of the mixture weight on a wet basis and
approximately 35 per cent of the mixture weight on a dry basis. The remaining 65 per cent of the
paint coating on a dry basis would consist of the noncombustible components of the dried paint,
including the calcium carbonate, diatomaceous earth, hydrous aluminum silicate, titanium
oxide and zinc oxide identified in the material safety data sheet.

4. CONE CALORIMETER TESTS

Testing of the painted and unpainted GWB samples was performed in the Cone Calorimeter
located in the Potomac Laboratory of the Department of Fire Protection Engineering at
the University of Maryland. The Cone Calorimeter was calibrated and operated in
general accordance with the procedures for Cone Calorimeter testing described in various
standards [13, 14].

Heat release rates and mass loss rates were calculated in accordance with NFPA 271 [13]
based on measured test data, including sample mass, exhaust mass flow rates and oxygen
concentrations. Data were typically acquired every 2s. The oxygen analyzer data was time-
shifted to account for transport lag in the gas sampling line, but adjustments are not made for
instrument response lags [15]. Data acquired during a test were imported into an Excel
spreadsheet template, then heat release and mass loss calculations were performed in accordance
with NFPA 271 within the spreadsheet template. These calculated parameters were then plotted
on graphs within the template. Data and graphs for each test were then saved in Excel format
under the filename associated with the test numbers shown in Tables I(a) to (c).

A heat release rate curve is shown in Figure 5(a) for a sample painted with four coats of paint
plus primer that was exposed to a heat flux of 35kW/m>. Mass loss rate and total sample mass
curves are shown in Figure 5(b) for the same sample. Similar curves are shown in Figures 6(a)
and 6(b) for an imposed heat flux of 50 kW/m? and in Figures 7(a) and 7(b) for an imposed heat
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Figure 5. (a) Heat release rate and total heat release histories for Test 0004505-35kW/m?; and (b) mass
loss rate and sample mass histories for Test 0004505—35 kW /m?.
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Test 0002715
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Figure 6. (a) Heat release rate and total heat release histories for Test 0002715-50 kW/m?; and (b) mass
loss rate and sample mass histories for Test 0002715-50 kW /m?.

flux of 75 kW/m?. Figure 8(a) shows heat release rate curves for samples with different coatings
of paint subjected to an imposed heat flux of 35 kW/m?. Figures 8(b) and 8(c) show similar data
for imposed heat fluxes of 50 and 75 kW/m?, respectively.
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Figure 7. (a) Heat release rate and total heat release histories for Test 0005305-75 kW/m?; and (b) mass

loss rate and sample mass histories for Test 0005305-75kW/m?.

The ignition time of the GWB samples was measured in two ways. First, the data acquisition
system for the Cone Calorimeter was used. In this procedure, a button on the Cone Calorimeter
assembly is depressed when ignition is first observed and is held down as long as burning persists
for up to 10s. Based on this procedure, the Cone Calorimeter data acquisition program reports
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Figure 8. (a) Comparison of heat release rate curves for different coatings—35kW/m?; (b) comparison of
heat release rate curves for different coatings—350 kW/m?; and (c) comparison of heat release rate curves for
different coatings—75 kW /m?>.

the time to ignition. Second, a stopwatch was used to measure ignition times manually, which
were then recorded. While differences between the two methods are generally small, the second
method consistently yielded more accurate ignition times, so these are the values that are
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Figure 9. (a) Ignition times for data set 1-35kW/m? heat flux; (b) ignition times for data set 2-50 kW/m?

heat flux; and (c) ignition times for data set 3-75 kW/m? heat flux.
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Figure 10. (a) Average ignition times for data set 1-35 kW/m? heat flux; (b) average ignition times for data
set 2-50 kW/m? heat flux; and (c) average ignition times for data set 3—75kW/m? heat flux.
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reported. Differences between the two methods are most likely attributable to the finite scan rate
of the data acquisition system as well as the reliance on human action for both methods.

The ignition times based on stopwatch data are shown in Tables I(a) to (c) for all samples.
Ignition times are plotted for all samples in Figures 9(a) to 9(c) for data sets 1 to 3, respectively.
Samples that did not ignite or for which data are not available are indicated by the absence of a
time to ignition in the tables and figures. Average ignition times are plotted along with standard
deviations in Figures 10(a) to 10(c) for data sets 1 to 3, respectively. Samples that did not ignite
are not included in the average or standard deviation calculations.

An interesting phenomenon, ‘blistering,” was observed during some of the Cone Calorimeter
tests. When blistering occurred, the paint film would delaminate from the GWB substrate and
form one or more bubbles above the GWB surface. Eventually, cracks would form in these
bubbles, vapors would be ejected from these cracks under pressure, then ignition would occur.
Blistering was accompanied by a marked decrease in the time to ignition, typically by a factor of
3 to 4 when compared with samples that did not blister. This is illustrated in Figures 9(a—c) and
10(a—c), which also show that the potential for blistering is a function of both the imposed heat
flux and the number of coats of paint. At 35kW/m? blistering was only observed for samples
with eight coats of paint, except that one of the nine samples with six coats of paint also
blistered. At 50 kW/m?, blistering occurred for all samples with four or more coats of paint, but
not for any samples with two coats of paint or less. At 75kW/m?, blistering occurred for all
samples with two or more coats of paint, but not for any samples with one coat of paint or less.

When blistering of the surface occurred, it typically was initiated away from the edges, near
the center of a sample. In some cases, a relatively large blister developed that covered almost the
entire sample surface before bursting and deflating. In other cases, multiple smaller blisters
would develop and burst. Reasons for these differences have not been determined. Under both
circumstances, ignition tended to occur when the blisters burst and released vapors from within
the blisters. The decrease in the time to ignition that was observed when blistering occurred may
be due in part to the relative ease of heating the thin film of the blister and in part to the higher
heat fluxes at the blister surface resulting from its closer proximity to the cone heater as it lifts
from the surface.

5. ANALYSIS

The potential for upward or concurrent flow flame spread on painted GWB is evaluated based
on the model developed by Quintiere and co-workers [2,3,4]. This model considers the potential
for flame spread in terms of the ignition and burnout of surface elements as they are subjected to
heat fluxes imposed by the flame and external sources. The details of the model and its
simplifying assumptions are described elsewhere [2]. What is significant for the present
discussion is that this flame spread model produces a dimensionless ‘flammability parameter,’
defined as:

b=kQ" — tig/th) — 1 (1)

According to the Quintiere model, acceleratory upward flame spread is indicated when the value
of the flammability parameter is positive, while decay to extinction is expected if its value is
negative. Steady fire propagation is expected if the flammability parameter evaluates exactly as
Zero.
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Evaluation of the flammability parameter requires evaluation of the respective parameters
used to calculate it. Dillon et al. [16] discuss a number of ways to interpret Cone Calorimeter
data for use with the Quintiere model. Mowrer and Williamson [17] describe a technique for
using Cone Calorimeter data directly to evaluate these characteristic parameters and the
associated flammability parameter for thin finish materials adhered to noncombustible
substrates. These materials tend to exhibit distinct peaks in their heat release rate histories
due to their relatively short burning durations. While originally developed for textile
wallcoverings adhered to GWB, this technique should also be applicable to painted GWB, so
it is used here. For a given incident heat flux, the ignition time (#), the peak heat release rate per
unit area (Q”) and the total heat release per unit area (Q”) are measured and substituted directly
into Equation (1). The ignition time in Equation (1) is the ignition time resulting from the heat
flux associated with the wind-aided flame at the sample surface.

The peak heat release rate per unit area is calculated based on measurements made during a
Cone Calorimeter test. Calculated values of the peak heat release rate per unit area are provided
in Tables I(a) to (c) for all the specimens in the three data sets. They are also plotted in Figure 11
as a function of the number of coats of paint for each data set. It should be recognized that heat
release rate curves with distinctive spikes have uncertainty in the peak value due to the finite
data acquisition intervals, transport lags and instrument response characteristics [15].
Nonetheless, the calculated peak heat release rate per unit area is used here as representative
of the actual performance.

The total heat release per unit area is the area under the heat release rate—time curve; the
value used for analysis depends on the time frame of interest. As shown in Figures 5(a), 6(a) and
7(a), the total heat release per unit area is influenced by the heat release measured after the active
burning period. The heat released during this period is not expected to contribute to the
potential for flame spread, so it is ignored for present purposes and only the heat released during
the active burning period is included in the calculation of the burning duration and hence the
flammability parameter. For present purposes, this is somewhat arbitrarily defined as the time
following the active burning period when the unit heat release rate first falls below 20 kW/m?.
This value is approximately coincident with the end of the active flaming period for these
samples.

Calculated values of the total heat release per unit area are provided in Tables I(a) to (c) for
all the specimens. They are also plotted in Figure 12 as a function of the number of coats of
paint for each data set, where the primer coating is counted as one of the coats. Linear curve fits
for each data set are also plotted in Figure 12. These curve fits can be used in conjunction with
the surface paper basis weight and with the average paint application rate to deduce effective
heats of combustion for the paper and the paint during the active burning period. These are
shown in Table I1I for the three data sets.

The effective heats of combustion for both the paper and the paint demonstrate an increase
with imposed heat flux, as shown in Table III. At the lower heat fluxes, more smoking of the
sample occurs before ignition; this apparently contributes to lower combustion efficiency and
consequently to a lower effective heat of combustion. The effective heats of combustion seem
low, particularly for the paper, in comparison with published data. This is due, at least in
part, to neglecting the heat released in the tail region of the heat release rate curves in the
calculation of the effective heat of combustion during the active burning period. As illustrated in
Figures 5(b), 6(c) and 7(c), only about 60 percent of the total heat release has been realized
during the active burning period. If the effective heats of combustion shown in Table III are
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Table III. Effective heats of combustion for paper and paint.

Data set Set 1 Set 2 Set 3
Imposed heat flux (kW/m?) 35 50 75
Paper basis weight (g/m?) 220 220 220
Heat release for paper only (kJ/m?) 879 1583 1757
Paper effective heat of combustion (kJ/g) 4.0 7.2 8.0
Paint application rate (dry basis) (g/m~/coating) 45.5 46.2 53.2
Paint heat release (kJ/m?/coating) 236 288 417
Paint effective heat of combustion (dry basis) (kJ/g) 5.2 6.2 7.8
Paint effective heat of combustion (organic basis—35%) (kJ/g) 14.9 17.7 22.4
4.0
|
E
5 * 35 kW/m?2
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Figure 13. Calculated flammability parameter as a function of coats of paint for each data set.

normalized by a factor of 0.6 to account for this, values more consistent with literature values
are achieved.

The flammability parameter expressed by Equation (1) was calculated for each specimen
using the values for the ignition time, peak heat release rate per unit area and total heat release
per unit area provided in Tables I(a) to (c). Calculated values of the flammability parameter for
each specimen are shown in Tables I(a) to (c), where the flammability parameter is identified as
the ‘Quintiere b factor.” Calculated flammability parameters for each of the three data sets are
plotted in Figure 13 as a function of the number of coats of paint. Linear curve fits are also
plotted in Figure 13. In theory, the point where the flammability parameter becomes positive
represents the point where acceleratory flame spread would be expected instead of local
burnout. Based on the linear curve fits shown in Figure 13, this would occur at approximately 10
coats of paint (plus one coat of primer) at an imposed heat flux of 35kW/m?, between five and
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six coats of paint (plus primer) at 50 kW/m? and between three and four coats of paint (plus
primer) at 75 kW/m?>.

6. DISCUSSION

Whether a finish material will spread a flame or burn out locally can be considered as a race
between the burning duration of an element that has been ignited and the time to ignition of an
adjacent element being exposed to the heat flux from the burning element. If an element burns
long enough to cause ignition of an adjacent element, flame spread can be expected; if not, then
localized burnout would be expected. This is the essence of the Quintiere upward flame spread
model.

The burning duration of an element is a function of the amount of fuel available in the
element and the burning rate of the element. In turn, the burning rate of an element depends on
the net heat flux at its surface. This can be expressed as:

Q" poAH.  poL 2

QU qget (AHC /L) q.gel
where pd is the combustible finish mass per unit area (kg/m?), L is the effective heat of
gasification (kJ/kg) of the finish material and ¢/, is the net heat flux (kW/m?) at the burning
surface after ignition occurs. Equation (2) does not explicitly address combustion efficiency
effects, which are assumed to be incorporated implicitly into the other terms.

The ignition time of an element depends on its thermophysical properties as well as on the
imposed heat flux. Typically, finish materials are considered as either thermally thick or as
thermally thin, depending on the thickness of the finish/substrate assembly as well as on the
thermal properties of the assembly. For thermally thick materials subjected to a constant net
heat flux at the surface, the ignition time can be expressed as:

m AT,)*
e =7 kpc[ — 'g} (3)

net

N

For thermally thin materials subjected to a constant net heat flux at the surface, the ignition time
can be expressed as:

b= peo @
net

In general, the net heat flux terms in Equations (2), (3) and (4) will not be equal to each other
or constant. Nonetheless, the potential for flame spread can be evaluated, at least semi-
quantitatively, by assuming the net heat fluxes in Equations (2), (3) and (4) are proportional to
each other. With this assumption, the ratio between the burning duration, #,, and the ignition
time, f,, can be evaluated in terms of Equations (2), (3) and (4). If this ratio has a value greater
than 1 (i.e., #,/t, > 1), then a material would be expected to burn long enough for the adjacent
element to ignite, in which case flame spread would be expected. For a thermally thick material,
the ratio between the burning duration and the ignition time evaluates as:

v p5L <11
- (2= 5
tig Lb <IRP> net ( )
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where the IRP is an ignition response parameter that is similar to the square of the thermal
response parameter defined by Tewarson [18] for thermally thick materials and y, is an
appropriate proportionality constant to account for the ratio between the different net heat
fluxes in Equations (2) and (3) (i.e., e pq2 = Xbdnerqs) Consequently, for a thermally thick
finish, flame spread would be indicated when

IRP
-1
Dnet > Xb (p5L> (6)

This analysis suggests that there is a critical net heat flux for flame propagation on a thermally
thick finish. At net heat fluxes above this critical threshold, upward flame spread would be
expected, while localized burnout would be expected at lower heat fluxes. Equation (6) also
shows that the critical net heat flux for flame propagation is expected to vary inversely with the
coating application rate, which should be nominally proportional to the number of coatings.
This is illustrated in Figure 14, which shows the number of coats of paint required to yield a
positive flammability parameter as a function of the imposed heat flux based on the curve fits
developed in Figure 13. A curve fit for the inverse relationship expected between the critical net
heat flux for flame propagation and the number of coatings is also shown in Figure 14. The
value of 356.5 used as the proportionality factor in this curve fit was determined as the average
value of the heat flux—coating product for the three data points illustrated.

The effect of preheating can also be considered, at least qualitatively, in terms of Equation (6).
Preheating of a surface would tend to decrease the effective value of the IRP by decreasing the
surface temperature increase needed for ignition; it would also tend to decrease conduction
losses into the surface. This would have the consequence of decreasing the value of the critical
net heat flux for flame propagation. In the limit, as the surface temperature approaches the

Coats of paint vs. imposed heat flux
for positive flammability parameter

25 3
20
Curve fit:
y =356.5/x
€15
8
5 Flame spread
% < indicated
S 10
o
Flame spread
not indicated
5 ‘.\
0

0 10 20 30 40 50 60 70 80 90 100
Imposed heat flux (kW/m?2)

Figure 14. Number of coats of paint required to yield a positive flammability parameter.
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ignition temperature, the critical net heat flux for flame propagation would decrease towards
Zero.

Attention is now returned to the painted GWB. While the previous discussion addresses some
of the theoretical considerations related to the potential for flame spread, actual ignition times
and burning durations were measured in the Cone Calorimeter tests. These measurements can
be used directly to compare burning durations with ignition times at an imposed heat flux. In
doing so, however, it should be recognized that the heat flux at the surface changes once the
specimen ignites. Before ignition, the incident heat flux at the surface is simply that imposed
externally by the Cone heater. Following ignition, this external heat flux is augmented by
additional heat flux from the flame of the burning material. Some potential impacts of this are
discussed below. But first, the burning durations and ignition times at a given imposed heat flux
are discussed.

The ratio between the burning duration and the ignition time at a given heat flux is shown in
Figure 15 for each data set. Figure 15 shows that, with one exception, the burning duration is
always shorter than the ignition time for the 35kW/m? data. For these data, the ratio between
the burning duration and the ignition time is near unity only for the samples with eight coats of
paint. These are the only samples that demonstrated blistering at this heat flux. Similarly, for the
50 kW/m? data, the burning duration is less than the ignition time for samples with two coats of
paint or less and generally greater for samples with four coats of paint or more. This distinction
is consistent with the occurrence of blistering at this heat flux.

Burning duration / ignition time ratio
evaluated at imposed heat flux
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Figure 15. Burning duration to ignition time ratio as a function of coats of paint for each data set.
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The distinction in the burning duration to ignition time ratio is even more pronounced for the
75kW/m? data. For these data, samples with one coat of paint or less have burning duration to
ignition time ratios near unity, while samples with two or more coats of paint have burning
duration to ignition time ratios considerably greater than unity, ranging from 2.7 to 8.1. This
performance is consistent with the occurrence of blistering at this heat flux and can be attributed
at least in part to the 3- to 4-fold decrease in ignition times that accompanies blistering, as
shown in Figures 9(a)—(c).

Specimens that do not blister are expected to behave as thermally thick materials. For
thermally thick materials, the ignition response parameter is expected to remain constant. By
assuming that the net heat flux is proportional to the imposed heat flux and that the
proportionality constant, yy,, is independent of the magnitude of the heat flux, Equation (3) can
be solved for an effective ignition response parameter in terms of the ignition time and the
imposed heat flux as:

]Rpeff :T:_kp
Tor 4

IRP AT, ?
=Z c[ lg} = tig(qut)zz const. (7

The proportionality constant accounts for the fact that only a fraction of the imposed heat
flux is absorbed at the surface, with the remaining fraction reradiated and convected from the
surface.

The effective ignition response parameter expressed by Equation (7) is plotted as a function of
the coats of paint in Figure 16 for all the specimens. Figure 16 clearly shows a difference in the
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Figure 16. Effective ignition response parameter for all specimens.
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effective ignition response parameter between specimens that blistered and those that did not.
For the specimens that did not blister, the average value for the effective ignition response
parameter was 105,374 (kW/m?)*-s, with a range of 66,518 to 158,750 (kW/m?)*-s. This
compares with values of 104,977 (kW/m?)*s for ‘common’ GWB and 75,430 (kW/m?)*-s for
“FR” GWB based on thermal properties reported by Quintiere [19] that are derived from LIFT
tests [20]. For specimens that did blister, the average effective ignition response parameter was
31,065 (kW/m?)*-s, with a range of 22,050 to 42,875 (kW/m?)>-s. On average, this represents a
decrease by a factor of 3.4 in comparison with the specimens that did not blister.

The occurrence of blistering might reasonably be expected to change the flammability
performance of a surface from that of a thermally thick material to that of a thermally thin
material. For a thermally thin material, Equation (4) suggests that the total energy required for
ignition should remain constant provided the ignition temperature is constant. By again
assuming that the net heat flux is proportional to the imposed heat flux and that the
proportionality constant, ¢, is independent of the magnitude of the heat flux, Equation (4) is
rearranged to solve for what is termed here the effective specific ignition energy (SIE.g):

CATig —_ tigq.le,xt
Znf po

The effective specific ignition energy is plotted as a function of the total mass of paint and

primer in Figure 17 for the specimens that blistered. From Figure 17, it is evident that the

effective specific ignition energy is not quite constant as might be expected for a thermally thin
material; it decreases with increasing coats of paint as well as with increasing heat flux. It is

SIEor = (8
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Figure 17. Effective specific ignition energy for specimens that blistered.
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suspected that this behavior may be related to the permeability of the paint film, but the
changing heat flux as the paint film expands towards the cone heater might also play a role.

Regarding the potential role that permeability might play, the following explanation is
offered. As additional coats of paint are added, the permeability of the surface is expected to
decrease. As moisture within the GWB evaporates and tries to escape from the surface, it is
trapped by the paint film, causing a pressure increase that leads to blistering. As the imposed
heat flux increases, the rate of moisture evaporation will increase, causing a larger pressure rise,
and consequently blistering, earlier. The results in Figure 17 are consistent with these
observations, but more work is needed to explore the effects of moisture evaporation and paint
film permeability on the potential for blistering. The actual performance of painted surfaces that
blister most likely falls somewhere between that expected of a thermally thick and a thermally
thin material.

At this point, attention is returned to consideration of the effects of the flame heat flux.
Quintiere and co-workers [21,22] investigated the magnitude of the flame heat flux in the Cone
Calorimeter for a gas burner and for a range of thermoplastic materials burning under steady
conditions. They concluded that the flame heat flux in the Cone Calorimeter is fairly constant
for a given material provided the flame length is at least twice its effective diameter. They
determined values of the flame heat flux that ranged from 14kW/m? for polypropylene to
37kW/m? for PMMA, with nylon and polyethylene having intermediate values of 30 and
25kW/m?, respectively.

Flame heat fluxes were not measured in the Cone Calorimeter tests reported here. The method
described by Hopkins and Quintiere [21] for determining flame heat fluxes in the Cone
Calorimeter only works for the quasi-steady burning conditions they described, not for the
highly transient burning conditions observed here. Consequently, the effect of the flame heat
flux in the Cone Calorimeter tests reported here is only addressed qualitatively.

Before a material ignites in the Cone Calorimeter, it is subjected only to the external heat flux
imposed by the Cone heater. Consequently, the ignition time is that associated with the imposed
heat flux. Once a material ignites in the Cone Calorimeter, it is subjected to the combination of
the external heat flux and the flame heat flux. Consequently, the burning rate and the burning
duration should be that associated with this combined, but unknown, heat flux. Therefore, it
could be argued that the burning duration associated with the combined heat flux should be
compared with the ignition time associated with the imposed heat flux only to evaluate the
potential for flame spread at an imposed heat flux. On the other hand, the combined, but
unknown, heat flux might be more similar to field conditions, where a fuel element will be
subjected to an external heat flux until it ignites, then will be subjected to this external heat flux
in addition to the heat flux from its own flame after it ignites. If this flame heat flux in the field is
comparable to the flame heat flux in the Cone Calorimeter, then it would be reasonable to use
the burning duration associated with the imposed heat flux to evaluate the potential for flame
spread at that imposed heat flux. For the present analysis, this has been done.

7. SUMMARY AND CONCLUSIONS
The flammability characteristics of type X gypsum wallboard coated with different layers of an
alkyd/oil interior paint have been evaluated. The same paint was used for all layers except the

primer coat, which was also an oil-based paint. The Cone Calorimeter was used to evaluate
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ignition and flammability characteristics under constant imposed heat fluxes of 35, 50 and
75kW/m?. Data derived from these Cone Calorimeter tests were used in conjunction with
Quintiere’s upward flame spread model to evaluate the potential for concurrent flow fire
propagation on painted GWB surfaces.

This work suggests that there is a relationship between the number of coats of paint on a
surface and the potential for upward flame spread. As the number of coats of paint increases,
the critical heat flux to the surface required for flame propagation decreases. Below the critical
heat flux for flame propagation, local burnout is expected, while above this critical heat flux,
flame propagation might be expected. Large-scale fire tests would be useful to verify this
conclusion under realistic enclosure fire conditions.

During the Cone Calorimeter tests, the phenomenon of blistering was observed where the film
of paint would delaminate from the GWB substrate under the imposed heat flux. Blistering did
not occur for all painted samples. Rather, the likelihood of blistering appeared to be a function
of both the imposed heat flux and number of coats of paint, with more coats of paint being
required at lower heat fluxes. When blistering did occur, the time to ignition decreased
dramatically, typically by a factor of 3 to 4 when compared with samples where blistering did
not occur. Since the potential for flame spread can be viewed as a race between the burnout of
already ignited surfaces and the ignition of adjacent surface elements, such a reduction in the
time to ignition would tend to tip the balance in favor of flame spread.

Further work is needed to explore the phenomenon of blistering and its effect on the potential
for flame spread on painted or coated surfaces. This work should include substrates other than
GWRB, coatings other than the alkyd/oil-based paint considered here as well as the effects of
aging and different combinations of paint/coating types on the potential for blistering. Blistering
is an issue that affects the everyday performance of coatings and coated surfaces. Work related
to this phenomenon under normal use conditions should be investigated to see if it can be
applied to the prediction of blistering under fire conditions.

NOMENCLATURE
b Quintiere flammability parameter (defined in Equation (1))
c Specific heat (kJ/kg.K)
IRP Ignition response parameter (kW/m?)*-s (= 7r4kpcATé,)
k Thermal conductivity (kW/m.K)
ke Characteristic flame length coefficient (~0.01 m?/kW)
L Fuel heat of vaporization (kJ/kg)
m” Fuel mass per unit area of surface (kg/m?) (= pd)
0" Characteristic heat release per unit area (kJ/m?)
Q" Characteristic heat release rate per unit area (kW/m?)
Gt Net heat flux to fuel surface (kW/m?)
lig Characteristic ignition time (s) )
ty Characteristic burning duration (s) [= Q"/Q"]
Tig Effective ignition temperature (°C)
Ty Ambient temperature (°C)
I Proportionality constant for net heat fluxes for ignition and for burning (—)
Aht Fraction of imposed heat flux absorbed at fuel surface (—)
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Fraction of fuel that must be vaporized to form ignitable mixture at fuel surface (—)
Fuel surface thickness (m)

AH, Fuel heat of combustion (kJ/kg)
AH, Fuel heat of vaporization (kJ/kg)
AT, Ignition temperature rise above ambient (7Tj,—Tp)

Density (kg/m?)
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